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I. INTRODUCTION

Studies in separating boundary layers leading to accurate methods for

predicting flow separation, predicting flows on the verge of separation,

predicting separating and reattachinq flows and predicting fully-separated

flows find a large number of applications in aerodynamic probleir-s and naturally

in the design of both cc.mmerial and military airplanes. ror cxomple, an

accurate determination of the separation point is very crucial in many problems

since separation strongly influences the performance of aero,'nawic configu-

rations. A common procedure employed to determine this point is to -olve the

governing boundary-layer equations for a given external velocity distribution

and find the point (if any) where the wall shear goes to zero. According to

recent studies (for example, ref. I), such a prediction can be done accurately

for two-dimensional and axisynunetric laminar and turbulent flows. Such a

capability should also exist shotcly for three-dimensional flows in view of the

considerable work being done in this area (see for example, reds. 2, 3, 4).

Predicting flows on the verge of separation (that is, flows with zero wall

shear) is quite important in many problems. In the case of airfoils where it

is desired to maximize the lift, it is necessary to compute the minimum distance

over which a given pressure rise can be obtained without the flov: separating.

The most rapid pressure rise that it is possible to obtain occurs when the wall

shear stress 3long the suction side of the airfoil decreases to zero. There-

fore, it is of considerable interest to be able to calculate boundary layers

with specified values for the wall shear that also decrease to 7ero. The

Liebeck airfoils discussed in refs. 5 and 6 are designed on that principle.

Prediction of partially separating flows is cne of the most difficult,

yet rewarding tasks in aerodynamics. An economic and efficient operation of

aerodynamic devices depends on smooth, streamlined flow. The upper limit of

this efficient operating range is marked by the flow breakaway, called sepa-

ration, or stall. The ideal attached-flow conditions are seldom attained in

practice since a design is a series of compromises between conflicting require-

ments. As a specific example, consider an airplane wing whose maxilul lift is

deternined by separation. If this wing was designed from the performance



standpoint alone, simultaneous spanwise stall would be desirable. However,

because nobody wants to stall without lateral control (by ailerons), wings are

designed to have progressive stall from the wing root out. Operating with

partially separated wings, especially for swept wings, creates in turn,

longitudinal control problems because of shifts in the center of pressure.

From the standpoint of design of control surfaces it is necessary to have

methods for calculating overall forces on wings with partial separation. Today

such a capability for calculating partially separating flows, even in two

dimensions, does not exist.

Prediction of separating and reattaching flows is also very important.

Two typical examples of such flows are a leading edge bubble and shock boundary-

layer interaction. In both cases the boundary layer separates from the surface

but reattaches after a short distance. Here it is important to know under

what conditions the boundary layer reattaches or separates completely. The

reattachment after a leading edge bubble on highly swept wings is relevant to

the leading-edge vortex formation, and the absence of reattachment after a

shock signifies shock-induced stall. Today a satisfactory prediction of

separating and reattaching flows, even for two dimensions, again does not

exist.

In recent years a number of studies on inverse boundary-layer flows have

heen conducted. Except for the inteqral-method approaches, most of these studies

have been directed to laminar layers. In ref. 7, Catherall and Mangler solved
the lpminar boundary-layer equations in the usual way until the separation point

was approached. By assuming that the displacement thickness behaves in a regular

prescribed fashion in the region of the separation point, they calculated the

pressure distribution in that region for the prescribed displacement thickness

distribution. Their numerical solutions did not show any signs of a singular

behavior at separation.

In ref. 8, Keller and Cebeci solved the laminar boundary-layer equations

for a prescribed positive wall shear and in ref. 9, Klineberg and Steger solved

them for a prescribed negative wall shear. In ref. 10, Carter presented numer-

ical solutions of the laminar boundary-layer equations involving separation and
reattachment. He obtained solutions with an inverse procedure in which he

2



prescribed the displacement thickness or the wall shear. He compared his

results with Klineberg and Steger's separated boundary-layer calculations (9 )

and with Briley's solution (11) of the Navier-Stokes equations for a separated
region. Ro

In ref. 12, Cebeci, Berkant, Silivri and Keller solved the turbulent

boundary-layer equacions for a prescribed positive wall shear. The only other

turbulent boundary-layer calculations for flows with prescribed wall shear were

niade by Kuhn and Nielsen: 13, by using an integral technique. However, unlike
ref. 12, their solutions include negative wall shear as well as positive wall

shear.

The work described in this report is one phase of studies on separating

flows conducted under the contract N00014-74-A-0203-O001, NR215-234, from the

Oflice of NavYl Research. It deals with the calculation of laminar and

turbulent boundary-layer flows for standard and inverse boundary-value problems,

and is applicable to both incompressible and compressible flows. The standard

boundary-layer problem considers the solution of the usual boundary-layer

equations for a given external velocity distribution. The inverse problem

considers the solution of the governing equations for assigned wall shear or

for assigned displacement thickness. It provides a very useful and powerful

method for calculating flows on the verge of separating.

The method, which is developed for two-dimensional flows, can easily be

extended to axisymmetric flows. It also has the potential to be used in a
number of problems that require inverse boundary-layer procedures. Some of

them are:

1. Laminar flow control studies. Here-the problem is to find the minimum

suction rate to keep the flow laminar.

2. Design of ducts for a given pressure distribution.

3. Design of optimum ducts.

4. Calculation of attached duct-flows (inviscid and viscous) such as

those in diffusers.

5. Design of two-dimensional and axisymmetric shapes.

6. Possible application to separated external flows.

7. Possible application to separated flows in ducts, i.e., diffusers.

3



II. GOVERNING EQUATIONS

2.1 Boundary-Layer Equations

The governing boundary-layer equations for steady, two-dimensional,
compressible, laminar and turbulent boundary layers are the continuity,
momentum and energy equations. They are given by:

Continuity

--x Pu) + - (p-v) Z 0 (2.1.1)

Momentum

2u- + - 2 dx + 2 2u (2.1.2)

Energy

Pu T-3H_ 'H + P P - - (2.1.3)

Here -P Ti-7 and _pT-HT denote the Reynolds stresses and

pv ± p'V'

The boundary conditions for (2.1.1) to (2.1.3) for zero mass transfer are:

y = 0 u,v= 0 H = Hw  or (Ca/ay)w = given

(2.1.4a)

y -M u - ue(x) H He (2.1.4b)

2.2 Closure Assumptions for the Reynolds Stresses

The solution of the system given by (2.1.1) to (2.1.4) requiresclosure
assumptions for the Reynolds stresses, .p7-rF and -p7r-Hr. In our study
we use eddy viscosity (cm) and eddy conductivity (cH) concepts and define

u aH

p_-r = P °Em ay pVTTr = P-H ay (2.2.1)

4



and relate Em and EH to a turbulent Prandtl number Prt by

Prt = m/CH (2.2.2)

According to the eddy-viscosity fonrmulation of Cebeci ind Srlith (14 )
, th

turbulent boundary layer is divided into two regions, called inner and outer

regions, and the eddy viscosity is defined by separate formulas in each

region. They are:

LrI ) 2  um <- (moL (2.2.3a)
mm - ym

(Cm) 0  I- (ue -u)dyi (2.2.3b'
0

Here

L ,y l - exp(-y/A)]

.+ 11 , .. - 1 / 2 , . 1I 2
\~)/? 1//A A

w W (2.2.4)

[i - ll.8(u /W e)(e/w 2 p+]12

+ve ue due w 1/2
U U 'W

In (2.2.Th) and "2.2.4) A, r and A+  are "universal" constants equal to

0.0168, 0.40, and 26, respectively, for hign Reynolds number flovs, R, - 5000.

To compute flaws at low 'eynolds numbers, one can modify these three coefficients

as discussed in ref. 3, p. 221.

The eddy-.viscoqity formulas (2.2.3) can also be modified to compute

transitional boundary layers as well as boundary layers in which the stream-

wise wall curvature becomes important. Again for a detailed discussion see

ref. 3, p. 232.

5



2.3 Transformation of the Governing Equations

Before we solve the system given by (2.1.1) through (2.1.4) with the
Reynolds stresses replaced by (2.2.1), we introduce the Falkner-Skan transforma-
tion t ren;&vc the singuiariLy at x z u anu To stretch the coordinate

in the y direction; we define:

i Ue 1/2

x = x dn = pdy (2.3.1)

This transformation not only allos the calculations to br started very easily

at the leading edge or at the stagnation point but also removes the large vari-
ation in boundary-layer thickness along L'2 surface. In transfj)rmed variables,
the velocity profiles and temperature p-ofiles do not change "much" as the
calculations proceed in the x-direction. .his results in small computation

times, and allows larger spacings to be taken in the x-direction.

We nex- define the stream function q by

Pu -- (2.3.2)

and a dimensionless stream function f(x,n) by

(P W U X) 1 12 f(x,r ,) (2.3.3)

With the relations (2,3.1) through (2.3.3), we can write the momentum and energy

equa Lions as

Momentum

(bf") + p ff" + P rc 2 If (2.3.4)IaL -x x 234

Energy

(-(I + df'f") + P fg' x (f' 2 - g' (2.3.5)

Here primes denote differentiation with respect to n and

- ) e C(2.3.6a)
u eH e

6



2

b (1 + )C, e 1 d I (2.3.6b)

+)( ( .3.6c)

- oPee dx ue dx
l2L ee

Similarly the boundary conditions in (2.1.4) become

Momentum

0 f = 0 f'= 0 (2.3.7a)

n OD ' (2.3 .7b)

Energy

w0 or 9w given (2.3.8a)

r, = ng -- I (2.3.8h)

In terms of transformed variables, the inner and outer eddy viscosity formulas

in (2.2.3) can be written in dimensionless form as

+ i 2 R1/2 I I,, 2 ]2

( = K2C Rxe- II [I exp(-y/A)]2  (2.3.9a)

10

where :m = Em/v and

C1/2 ( )/2 )/2 R 4(f,,)I/

Cl/2

I- 1. I' 4 f 1 /A+

_ 1. w (pe\2  ]11/2 V u2

N : - 11.8 + e e, * 2 (2.3.10)

T

Ow 1/2 rue x

u u(e (5j )/,12 f -J in, R x  e
O e

7



11. STANDARD AND INVERSE PROBLEMS

The system given by (2.3.4), (2.3.5), (2.3.7) and (2.3.8) with specified

Ue (x) or P2 (x) is the typical two-dimensional boundary-layer problem for

laminar and turbulent flows. For convenience we shall call it the standard

problem.

There are a number of problems that require inverse procedures in viscous

flows. One type of inverse problem results from requiring that the local sKun-

friction coefficient cf defined by
Twc W 2 (3.1.1)

cf (l/2eUe

be specified. In terms of transformed variables (3.1.1) becomes

2f"C
c f w (3.1.2)

Another type of inverse problem results from requiring that the displace-

ment thickness defined by

J ~i -)dy(3.1.3)
0 Pe e

be specified. In terms of transformed variables (3.1.3) becomes

ri

6* _f G- f')dii (3.1.4)

Other inverse problems can be formulated for the problems discussed at the end

of Section I. The system given by (2.3.4), (2.3.5), (2.3.7), (2.3.8) and (3.1.2)

or (3.1.4) is overdetermined and we cannot specify P2 (x) (i.e., Ue(x))

arbitrarily. Rather we must determine P2(x) as well as f(x,r)) to solve
the system. In our study we use Newton's method and determine the unknowns by

the procedure discussed in the next section.

L ~8 _



3.1 Newton's Method for the Inverse Problem

To describe our numerical approach to the problem of the specified

Cf case, let us assume that at x = Xn-l we are given the profiles of

,f', f", g, g', the pressure gradient P2(Xn-l) and the velocity ue (xn-).

At x = xn we seek an accurate approximation to the solution of (2.3.4),

(2.3.5) subject to (2.3.7), (2.3.8) for a given cf(x). To start the calcula-

tions, it is necessary to know P2 (x) and u e(x). The latter is necessary

since Rx  is a function oF ue. In our method we assume P2(x) and calculate

Ue(x) from the definition of P2(x) in (2.3.6c). Using central differences
n

we approximate P2  and solve it for ue = Ue(x n) to get

n n-/2 4 2a
n n-l 2 n (3.1.5)

2 n
where

Sxn-l/2 n-1/2 = 1 n-l +
=n - xn  - Xn I  ' 2 ( P + ) Xn-I/2 = 2 (n +  n-1

Once P2(x) dnd u e(x) are known, then the standard problem (2.3.4), (2.3.5)

subject to (2.3.7), (2.3.8) can be solved. The numerical method used to do this

will be described in Section IV. Let us denote the solution of the standard

problem by

f(x,n) = B[x,n,P 2 (x)] (3.1.7)

Using this solution, we can now calculate cf (wiich we shall denote by cfc)

from (3.1.2). Recalling that the desired value for the skin-friction coefficient

is Cf(x), we form:

[P2(x)] -Cfc - Cf (3.1.8)

and seek P2 (x) such that [P2 (x)]= 0 on x > 0.

To solve 4[P 2(x)1 = 0, we use Newton's method. WiLh some estimate

P2°)(x) of the desi-ed pressurp gradient, we define the sequence P (x) by

setting

9



-A I
j

I'I

((x) P)(x) (3.1.9)

The derivative of with respect to P2  can be obtained from (.3.1.8) by

making use of the relation given by (3.1.2) and (3.n.r). This gives

2C o
S.F" + f - (3.1.10)P2 ,T- w wun (pn-1/2 - 2

x e 2 - 2 an)

where

F"1

w aP2

To summarize one ztep of iteration of Newton's method, we first estimate a

value for P2 (x n), then calculate uen from (3.1.5), and obtain a solution of

(2.3.4), (2.3.5) subject to (2.3.7) and (2.3.8). The solution yield. a cf.

according to (3.1.2). From this result and from the desired value cf(xn), we

find ¢- from (3.1.8). It is then clear that the next value of P2(Xn)

can be calculated from (3.1.9), prcvided that a¢/DP2 is known. In Section 4.3

we shall discuss its calculation. The iteration process is repeated until

IpV(+l)(xn) - P)(xn)i < (3.1.12)

where is a small error tolerance.

Our procedure for the specified 6* case, is similar to the procedure for

the specified cf case. The difference in the procedure starts after we get

the solution k3.1.7). bei,vtirqj the calcilated' volue of 6* by

6*, and the desired value by 6*, we form

*P (x)] * (3.1.13)
2) c

We obtain P+l (x) from the expression given by (3.1.9). To find the deriva-

tive of - with respect to P2 from (3.1.13), we first write (3.1.4) as

6* - XA (3.1.14)

10



whe re

A f (c -u)d, (3.1.15)
0

Differentiating (3.1.14) with respect to P 2  and using (3.1.13), we get

A Ia
-n

3P2e (pn+(1/2) ).2, 2 .. 7

W- - F(n,)
2

where
F af

a2



IV. SOLUTION OF THE GOVERNING EQUATIGNS FOR THE STA;iDARD PR08LEM

4.1 Numerical Formulation

We use a very efficient and accurate numerical method to solve the

governing equations. This is a two-point finite difference method developed

by H. B. Keller(15) and applied to the boundary-layer equations by Keller and

Cebeci (see, for example, references 16. 17).

According to this method we introduce new independent variables u(x,n),

v(x,n), t(x,n) so that (2.3.4) and (2.3.5) can be written as a first-order

system

f' = U (4.1.1a)

u' =v (4.1.1b)

9' t (4.l.lc)

(by)' + P fv + P2  = - v i .u t)-.-v X (4.1.1d)
1 2 cax

(et + duv)' + P ft x t (4.1.1e)

On the net rectangle shown in Figure 1, we denote the net points by

no =O, hn  1 n I + ," , 2, J n, =n

no 0 , n n 1 +hj, j 2,.,J: n = (4.1.2) 

Here the net spacings kn and h. are completely drbitrary. The quantities

(f, u, v, g, t) at points (xn, n) of the net are approximated by net func-,fn n n ,n .

tions denoted by (is U v, it We also emply the notation for points

and quantities midway between net points and for any net function qn:

1 1
Xn -- (x + ), n. - (ni + , l

n 2 n n-i - 2 -1)

(4.1.3)

qn- 1 n qn-1I n I n nO (j +' j )' qj-! H 2 (qj +  q j-l

n n Xn-i n

n n

12
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x n

Fig. 1. Net rectangle for difference approximations1

The difference equations that are to approximate (4.1.1) are forinulated by con-A

sidering one mesh rectangle as in Fig. 1. We approximate (4.1.la,o,c) using

centered difference quotients and average about the midpoint (xn~~ of tie
segment P IP 2  as follows:A

II

h-1 (ff n f n) n (..a

iA

hTh (udife c e n t (4.1.4b)

hn ( _1\ nh'1 (gT _- =t

3 j-I ' j-; (4.1.4c)

Similarly (4.1.1d,e) are approximated by centering about the midpoint

(n nj- )  of the rectangle P1P2P3P4

h-1 nfn b n n (p (f,)n n n + Cn)(U2 nh. (bj. -I jI + an j - ( )-2 2)

Sn- l fn n-1 n n-, n n

1n-i r In
nVj j_ - Tj. Vj_) = R. - P2  (.Il.4d)

13



-n n-l n
h-  (e t- e_ltti_) + (P + n - (ug)_ + un-] a.n

n-i n n-1 n - n l

gj-,j- + f f t f! (4.1.4e)

where

n-I : Ifvn-I " 2n-l! ' bn-I n-I - bn-I n-1) +n-I n-IR., n  o _t. (u , . hj b v -V - + P (fv)j_

+p-l[ n-I (u n-l](.15a
+ cj_ )J- j (4.1 .a)

n-I (ft)n-I (ug) n-l n- I n- n-l n-lTj 2n(- [(duv)'[]n - -  (ej ntj e~ tjl

+ Pl (ft)j_1 (4.1.5b)

Equations (4.1.4) are imposed for j = 1,2,...,J. The boundary

conditions (2.3.7) and (2.3.8) yield, at x = xn ,
to = n =n =n =n tn .tn, gn

o 0, u O, , g = or 0 gi. (4.1.6)

4.2 Solution of the Difference Equations
If we s n-i n-i n-I n-1

if , a , j , tn  ) to be known for 0 <j .J,
then (4.1.4) for 1 <_ j < J and the boundary conditions (4.1.6) yield a

nonlinear algebraic system of 5J+5 equations ir ..s many unknowns

(fn, un, vn, g9 , t ). The system can be solved very effectively by using

Newton's method. We introduce iterates [f v. , g(.i) I

i = 0,1,2,..., with initial values for the specified wall temperature gw, say

14



f()(~(0) ~n-1, (0) (0) Ln-i
f =)z0. U) 0, vy v 9 w t 0  10

0 0 0 0

f~Q f 0) = n-I - (0) n-I (0) nl-i

j(O .2-l I j

f(O) (ON
(0) fn- u(0) 0, v~'' v ' - (0)J 0, tj0 ) t n- (4.2.1)

For the higher order iterat-.s we set

f(1 ~ ~ ) +l) P ) + 6 P)i , (+1 ,, ~ . +

g(+l)= (*)+ 59(l), +(+l = <ii)

Then we insert these expressions in place of [f*, u,, vis y., t. in (4.1.4)

(i), M (i) H) (
and drop the terms that are quadratic in L51f 1i) $u ,jV Vj , vq IK tjii

This procedure yields the following linear system:

h.

6.2 - 6.3-1 - 2 (6v u S j- (r2 )j (4.2.2b)

h.
.2 -69 - - -- I (6t. + 6t* 1 (r( . .c

29 - g1 232-

6v~ + 6 vijl + ()j6f~ + ()j6f. 1 + (r,)~ All

+ ( ) 6uj..i = (r 4 )j3  (4.2.2d)

(1) i 6t i + 2) 6tj1 + ('S4j "fj + (P4)j *5%1 + (%) -g. 6 i 6 9j.

+ (6 7) 6 + 8) 6u j-= (r 5 ) 1  (4.2.2e)

15



for j =1,2,...,J-1. Here for convenlience we have drooped the superscripts1
i and n. The coefficicnts ( ,). (k 1 to 6) of the diff eruceu moi;,entun,K ,I

Pnuation are:

b + - (P1 + an)fj an 'f

-b .+ c + fn~- ~n>-1
( 2 j  -j_+ -1 2 P n nfj-1 an j-1J 1

h .n '
[ -

(¢3) j 2 L 1( P I + an )v. + n vn ''l l

(4.2.3)
h.

( 4)j [ (P[ + n)vj-1 + c v.4n

(r5) j  -h(P 2 + n

( 6)j : -hj(P 2 + in)Uj-l

The coefficients (Bk (k I to 8) of the differenced energy equation

a re

= e + h (P1 + -)f f n-

= i - 
1 - (

=B) "- [(P1 + n)tj- + n -]

h. h.u n -

(5j : n j+ j_,

h. (u- ij -1 [(j_1 j- I a

h.

(5j 2 n (gj n-|

16



h.
-= n - (4.2.4)

The coefficie.its (rk) j  (k 1 to .) ;rc:

(r h u - f + fj-

.r.,).hv -u + V
(r2 hjv_ - uj + u.-

(r3)j  hjtj - gj +g - (4.2.5)

j..h (R U- P2 C. )- bjv. - bjivj + h I(P + xn)(fv)j

2 (P1 ni~ n-ln.... CLn) U j L -vj -1 j- + f .-

0, . Tn- l  etj cj~ j +h. {(P1 + cn)(ft)j-r5) j : h j-. + .it+jCL n

c uq) 1(n-1 11-u n n-l t. t- 1 f" _ - j. - + - j_ - uj_1 j . ._ j.., J-4

The boundary conditions for the specified wall temperature become

6fo = 0, go 0 0, Auo  0, 0 uj O, Aq =0 (4.2.6)

The boundary conditions for the specified heat flux become

0o = 0, dto = 0, 8uo = 0, 6uj = 0, g = 0 (4.2.7)

We use the block elimination method discussed by Isaacson and Keller(I

to solve the linear system (4.2.2), and (4.2.6) or (4.2.7) depending on the boundary

conditions. Foi completeness we present the block elimination method for our

problem in Appendix A.
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V. SOLUFION OF THE GOVERNING EQUATIONS FOR THE INVERSE PROBLEMj

5.1 Vari ational rq ;ations

In order to calculate j/,3P 2  in (3.1.10) or in (3.1.16) it is necessary

to know F" for the specified cf case or F(, )[ ;f,fP2(-,)] for the

specified , * case. [or this reason we take the derivative of (4.1.4) with

respect to leads to the following linear difference equations, known

as the variational equations for (4.1.4):

h -3 rn Fn_,) n

n nnnV -- Vj_, (5.1.ib)i

h1 (U~ Uh n-l1) = T ,( .1 1

h I (b'V'- n ) ( + FfnVn + nF .L f nV + vr_ Fn 1
+ - n L i VJ 3 +-I j - 1 -lj

+ (fv)n -u'). (p + Un + ,n
2 dL

+n'n- n n- + Fn fn-lvn + n (5.ln+ f nj_ Ij - ) - V -Co 51

ht n(eYT-e n Tn 1 (p+ ()[fnTn + tnF. fn Tn  + n F n_

(f L [ n  n nun n Gn n un n-1 Gn n32 j j - gj- _ j - .t ( j + I

(Un + un + fn- nT + Tn n-1 'Fn + n

(5.1.le)

Equations (5.1.la to c) can be written 3s

h.

1Fn.  _ n.  nI + fn
Fm -] 2 j U + j~n : =0 (5.1.2a)

3 j-1 2 (V j-1_

h.
i j- - T T j_]) 0 (5.1.2c)

l.
G O i



Equations (5.1.1d, e) can be rearranged in a form similar to (4.2.2d, e), that

is:

Vn + Vn_ + (€3)j F n + ( 4)jFn )n r

I + ( 2 )jV i 3  + FJ-I + 'z5 )jUj + ('6)J I (r4)j-.- ]
(5.1.2d)

Tn + n )11 F n  F (4j n  Gn Gn

( jj, + ( 2)Tj. + (3 + (64) I + (65)jGj + (: 6 )GJ + (N7)j 3

+ U = 0 (5.1.2e)

Here
F U 3 U _ v

a ,3 , V = P

and the coefficients 4k and Sk are the same as those given by (4.2.3)

and (4.2.4). The coefficient (r4)j. is defined by

n (fv) n 2)1. (5.1.3)
(r4)3 -Cj )j_ + ( _

Similarly the boundary conditions (4.1.6) become

0n , Un =0, O• Un 0  G 0 or T = 0 Gn 0

0 0 1' 0 0 0

(5.1.4)

As pointed out in Ref. 12, an alternative set of variational equations

can be obtained by first taking the derivative of (4.1.1) and then differencing

the resulting equations. However, this procedure does not necessarily yield

a good approximation to the desired derivative, V -v/,P 2  or F = f/)P2"

In the limit, as h. and kn - 0, both procedures yield the same result.

But as is reported in Ref. 12, for the actual numerical calculations, the

present procedure gives precisely the derivatives required for Newton's method

while the other procedure may not. This is, in fact, one of the basic differ-

ences between what is sometimes called 'quasi-linearization" and our exact

application of Newton's method. Thus the "qu:Lsi-linearized" iterations may not

converge quadratically (as was found to be toe case in references 12 and 17,

but our present iterates do show s:r)erlinea- convergence.

The system (5.1.2), (5.1.4) again forvis a block tridiagonal system (with

5 x 5 blockc) that is easily solved by the block elimination method described

in Apperiix A.



VI. RESULTS FOR STANDARD AND INVERSE PROBLEMS

6.1 Grid Across the Boundary Layer

While the numerical scheme employed here is a general one in that any

type of grid can be used in the n-direction (also in the x-direction), we

have chosen a grid previously used by the author and his associates 4 This

grid has the property that the ratio of lengths of any two adjacent intervals

is a constant, that is,

h= Khj_l (6.1.)

The distance to the j-th n-line is given oy the following formula:

KJ1

nj h j 1, 2, 3, ... , J K > 1 (6.1.2)

There are two parameters: hI, the length of the first Un-step, and K, the

ratio of two successive steps. The total number of points J are calculated

by the foilowing formula:

ln[l + (K - l)n/h] 61
J = In K(6.1.3) i

In our calculations we select the parameters hI and K and calculate

L the nw. Several runs with a different number of points across the boundary

layer showed that (see ref. 14) approximately 30 to 40 points are sufficient

for turbulent flows. A typical value of hI  is 0.01, provided that the
7

Reynolds number is not very large, say less than 10 . At higher Reynolds

numbers, it is better to use a smaller value of hl , say hI = 0.005. Figure

2 shows the values of K for various values of (/hI) x 10-2 and J.Inh I
From this figure we choose the value of K as follows:

Let us assume that we want to take a maximum of 40 points across the

boundary layer. If the Reynolds number is not very large, an estimate for the

maximum value of n = 50 is sufficient. Then taking hI = 0.01, the ratio

of (n/h1 ) x 10-? is 50. Thus from figure 2, J = 40, K is approximately

1.19
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Figure 2, Variable-grid parameter for given step size and boundary-layer
thickness,

6.2 Results for the Standard Problem

To test the method for the standard problem we made calculations for the
experimental data of Lewis, et al ( 1 9 ) , which consists of cotql~,essible adiah.-[,_

turbulent boundary layers in adverse and favorable pressure gradients. The

results are shown in Fig. 3. The calculations were started by matching a zero-

pressure-gradient profile (R,, = 4870) at x = 11.5 in. downstream of the leading

edge of the model. Then the experimental Mach-number distribution shown in figure

3a was used to compute the rest of the flow. In general the calculated velocity

profiles, local skin-friction and momentum-thickness-Reynolds-number values are in

good agreement with experiment. We should point out here that the experimental

skin-friction values were obtained by Stanton tube and were not deduced from the

experimental velocity profiles
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Figure 3. Comparison of calculated and experimental results for the experimental
data of Lewis et al. (a) Velocity profiles and axternal Mach number
distribution. (b) Local skin-friction coefficient cf and Reynolds
number Re distribution.
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6.3 Results for the Inverse Problem

To test our method for the inverse problem for the case of specified cf,

we made calculations for incompressible turbulent boundary layers, and checked

the results obtained earlier in another study. We have chosen two experimental

incompressible flows from the data reported in the Stanford Conference on

Computation of Turbulent Boundary Layers (20) The flows we have considered

are known as 1300, 5200 and 5300 in that conference.

The flow 1300 corresponds to an accelerating flow. The experimental data

is due to Ludwieg and Tillmann. Flows 5200 and 5300 correspond to decelerating

flows measured by Stratford. They differ from those more common decelerating

turbulent flows in that they have a negligible skin friction. Thus, they are

on the verge of separating. For this reason it is a very severe test for a

numerical method and for exploring the accuracy of the eddy-viscosity formulas.

In the 1968 Stanford Conference, of the investigators who used differential

methods, only one computed 5200 and none has computed 5300. The accuracy of

computing these flows is also important in many design problems as was discussed

in the Introduction. The design of the Liebeck airfoils discussed in refs. 5

and 6, for example, is based on the results of boundary layer calculations for

a flow with vanishing skin friction.

in making these computations we have first considered the standard problem.

That is, for the given experimental velocity distribution and for the given

initial velocity p,'ofiles at x = xo, we have computed the velocity profiles and

the local skin-friction coefficient at each specified x-location. Then we made

the calculations for the inverse problem. We specified the computed local skin-

friction coefficient as an additional boundary condition at each x-station and

computed the velocity distribution by the inverse method. We have thus used the

computed skin-friction values, rather than the experimental values, as a boundary

condition. Such a procedure is necessary because a slight error in the experi-

mental skin-friction coefficient will severely affect the computed velocity

distribution. To discuss this point further, let us consider the data of

Stratford, either 5200 or 5300. It may be seen from the skin-friction lots

in figures 'b and 6b that the experimental values of cf show scatter; in an

adverse pressure gradient flow, cf should either stay nearly constant or

decrease. If one uses the scactered values as boundary condition and con.putes

23



the velocity distribution, one would get slight increases and decreases in

the velocity distribution with incr3asing and decreasing cf, respectively.

The computed results in fig. 4 for the accelerating flow 1300 show very

good agreement with experimental data. This indicates that our eddy viscosity

formulation is quite satisfactory for this flow. On the other hand, the

computed results in figures 5 and 6 for the two decelerating, on-the-verge-

of-separating flows, 5200 and 5300, are not satisfactory at all although the ]
computed results at the beginning of these two flows agree well with experi-

ment (see the velocity profiles at x = 2.9075 for both 5200 and 5300). This

is probably due to the effect of the strong pressure gradient suddenly imposed I
at x > 3.0 ft. However, the present method does not break down as almost

all other numerical methods do and performs extremely well even under such

strong pressure gradients at 5200 and 5300 contain.A
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Appendix A

BLOCK ELIMINATION METHOD

rhe linear system (4.2.2), (4.2.6) or (4.2.7) depending on the boundary

conditions can be solved in an extremely efficient manner as described by

Isaacson and Keller(18 ) since it has a blorck tridiagonal structure. This is

riot obvious and to clarify the solution procecdure we write our system in

matrix-vector form. There are many ways in which this can be done. They are

all equivalent and merely amount to different permutations of the equations or

of the unknowns or both. Further, the boundary conditions (4.2.6) or (4.2.7)

could be employed to eliminate the five unknowns and thus slightly reduce the

order of the system. When the latter is done, the system (4.2.2), and (4.2.6)

for the case of specified wail temperature can be written as

r j(A.l)

where 6. and r. are vectors denoted by3 rj

'SVo0 6uJ - l" ( r l j

6to0 6gj-I (r2 )3

o= 6f1 , = 6f.3 2 <j , J (r3 )j  1 < j J (A.2)

6vI  vj (r4)j

6t1  6tL (r5)j

Here the coefficient matrix A is

A1  C1A2I A *1
B2  A2 C2

(A.3)

Bj_l AJ-1  Cj- 1

B A
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and A., C., B. are 5 x 5 matrices given by (a hi12)

0 0 1 0 0 -a. 0 1 0 0

-a, 0 0 -a 0 -1 0 0 -aj 0

A 1 0 -a- 0 0 -a1  , A= 0 -1 0 0 -a_

(Q) 1 0 (3) 1 ( 1 I 0 (6)j (?)j (43)j (q) 0

0 (82)1 (63)1 0 (BI)" (48) (66)1 (83)j 0 (8l)j

2 < j <_J (A.4)

0 0 -1 0 0 -a. 0 000

0 0 0 -a. 0 1 0 0 0 0

Bj- 0 0 0 0 -a. 2<j<J; Cj= 0 1 0 0 0 1<,j<J-I

0 0 ( 4 )(2) 7)j 0 0

0 0 (64)j 0 (62)j (67)j(BB)j 0 0j

The system (A.l) can be solved by the block tridiagonal factorization

procedure described by Isaacson and Keller. According to this procedure, we

first seek a factorization of the form

-- = X (A.5)

where (with I. denoting the identity matrices)

B 2 2 ? r2  (A.6)
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From (A.3) and (A.5) it follows that

C, = A1, Alr 1  C1  (A.7a)

Cj = A. - Brj. 1  
J 2, 3, ... , J (A.7b)

Ojrj = C j = 2, 3, ... ,J- (A.7c)

Substituting (A.5) into (A.l) we get

rj . (A.8)

If we let

IL6 =w (A.9)

Then (A.8) becomes

j r. (A.1O)

If we denote r. by
3

(.Yl) (Yl2)j 0 0 0 0

('y2l)j (Y22)j 0 0 0

-j= (Y31)j (Y32)j 0 0 0 j 1 , 2, 3, .. J ~ l

(N1)j (Y42)j 0 0 0

(Y51)j (Y52), 0 0 j

Then frum (A.7a) we find that for j 1 ]
11

1) 5)+ a ( 1)a,

Y21 a ('C3l  I21 17)

31= -a1

1 (A.12)

Y41 a 1 Yll
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Y5 1 =y~

k7),

Y'22 - (60) 1 (A5' 2)

0

Y42 - y

1
'52 - a, 22

From (A.7b), we can show that for j > 2, the elements are ajare:

(all))i (cu12)j 1 0 0
(c,21) (1122)1 0 -a 1  0

j (91 )i ('32) i 0 0 -a.

(0,41) . (a42 (A(Q.13))

(a~l)i (42),j (a3)~ (4Q(6)

w h e r e a3  + ( y 3 12 ) ()3j ( i

1 + a( 4 ) 1

(a3a1)J,/

(a~l~j ) (y3 ) 2ji(41)-

-ad (64)i (Y31 )j1 -(62)j(-Y51 j~ (A11

(al 2) ij 3)-

(c'22)j a y4)-
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(0'32-j +a ()5)j-

(a42)j 8) - ( )(3)- - 2) i(-Y42)j-1

(a'52)j 86) - (Y j~3) - R)~ 5)

The unknowns y,, in (A.11) for i = 1, 2, 3, 4, 5 and k 1, 2 are next

determined from (A.7c). For k 1 , yi, are:

(Y lj = 1)-2 ( ) 2

(y ) = ,

51 j L(c, 31 )j (.Y 1I) i + (a 32 ) 3 (-Y22 ) 1 J a i

(a )k (c41)j 11 i + (c 1) i(c 21) ia j

(b ) + (;1) (a2) a- (A.15a)

(c)= + (c ) a~ + a

(a 2) =~ 51)j - (0)i(a 1 + (a 1 ) i(a 3 1 ) ia i

(b2) (ci52)j 0 )i(' ) + (01) 3(a 32) ja )

= (a1) 3 (b 2)j - (l a2
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For k = 2, yi2 are:

"(b1 )J(c 2)iI ) 2-

(a )j (c2)(Y22)j =.
(A.15b) A

(Y3 2 ) -(a)(Y 2 ) - (12)j(y22)j
a

(Y42 )j = [(2)j(Y]2)j + (a 2 2 )j(Y 2 2 )j] a)

(Y52)j [(a3l+)j(YI2)j + ( -1]

where (a])j, (bl)j, (a2 )j, (b2 )j  and L are the same as in (A.15a); (c2 )j
is different and is given by

(c = () + a

To determine w. we use (A.1O) and the definition of , in (.,6). If we

denote wj by

(w1)j

21j

wj ( (3) (A.16)
(w 4)j

(w 5)f

then it can be shown that

alW, = rI (A.16a)

a iw.i = r- -B j1 2 < j < J(A.16b)

Thus for J = 1, using thp definitions of al 11WI and rl from (A.16a) we

can write

38



Thus for j I, using the definitions of W1 and from (A.16a) we

can write

(wl) j = [(r 2 )j( 1 )jajI + (r4)j - ( 3 )(r 1 )j] [(2j (cl) . I

(w2)j = [(r 3 )j(0 2 )ja j1 + (r5)j - (13)j(r 1 )] [(N 2)j - I

(w3) j : (ri) (A.17)

(w 4) j  = wI  -(r 2 ) 1 al l

(w = -w (r1) a-l

For 2 < j < J, we use (A.16b). If we denote its right-hand side by 4 with

(n 1 )

(n2)j

n (n3).

1(ns4)_]

then

(c )1 ( b 2  - (b )(c2)(Wl~

(a1 ) i ( c 2 ) j  - (C1 ) i ( a 2 )(w2) j  -

(w3)j : (n l~ - (al)(w 1 )j - (c'l2)j(w2) j

(w4)j [((21 )j(Wl) j + (22 -- 2 ]aj

(w5)J = [(31)j(wl)j + (032)j (w2)J -(n3)]a 1

where (a1)O, (hl)j, (a2) j , (b2), tj are given by the definitions in (A.15a)

and , (C1) j  and (c2)j  are:
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(n9 (r + (iwi
2 j 2 '4 j-1

(n (r +a(Wj

(ni4)j - (r 4)j - [(c4)j (W 3)j-1 + (C2).(w4).J-,

(n 5) . (r 5)j - (64)j (W3) j1 +(0)(WO d

(cli = (n 4)j -C) (, + kl (n2) aJ 1

(c2) 3  (n 5)J - + ( l n3

Finally the perturbation quantities denoted by 1i are calculated from (A.6)
and (A.9). It follows that

W (A.20a)

-W 2 <i < J-1 (A.20b)

Thus at j J

'gJ-1 = (w2)J

6fo (w 3 )1 (A.21)

6v J = Y

For 2 <j < J-1,

6u j 1 = (1 - (Y11) i u . - (Y1 2 ). 6g.

69J-1 '(2j- (.f21 d~u i - (Y22)j 69j

6 = (w391 - (Y31)j 6U - (Y32 9j1  (A.22)

6vj (w4). - (Y41 )j 6u - (Y42 )jg6.

6t (W 5) . - NO 1)6U . - (Y52)j 6gj
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II

For j 1

6v0  (wl) I  'Y 1) 6u1 - (y12)l6g 1

t 0 = (w2) 1 - (y 2 1 )l6Ul -(22

fi (W3)1 - (Y31)l6ul - (132 16gI (A.23)

6vI  (w4 )1 - (y4l)l6Ul - (y42 )16g1

6t: (w5)1 - (Y5 1)16U1 - (y52 )16g1

Equations starting from (A.2) to (A.23) are for the case of specified wall

temperature. When the wall heat flux is specified some of those equations in

(A.2) to (A.23) change. For example 6o and A in (A.2) and (A.4) become

6v 0 1 0 00m

6g -a 0 0 0 0

-A-a -a
6- = 6fl A1  - 0 1 1 (A.24)

|6v1 (r2)1 (Y8) ( 3)1  (Y~lI  0

Stl I- L( 6)l (P, 3)l 0ol

These new definitions lead to the new equaticns for yik for j = 1, and for

(wi) 1 with i = 1, 2, ... , 5 and k = 1, 2. The equations for ik are:

('Y31)l -a 1

(Y211 ()I 1 -1 1(6 7 )1 - (63)l(-31 )l

[j4 (()(l

F ) 1(-5) _ (C3)1 (Y31) 1 a 18 I (21)I

"41 )1 = -(Yll)l - a 1
1

(-Y51) = (y21)l a 1 1

(-Y32)] = 0 (A.25)
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1

(Y)2? [( 5)] (a) I ] I- (B6)1 - (11i

I I IA(Y52)i -l + (yZ2) )]all

("42)l :F (-,1 - ( C7l [ e )I - (r,8 l (N 22)I

(Y12)l -(Y42)1

The equations for (wi)1  are:

(w 3) (r,),

(w2)i 6 1  _ 1 [(r5)l (i3 )1(w3 )1 + ( r1)l(r3),a I]

(Wl)l , [(r4) (c3)I(W3)I + (cl)l(r 2)la-lI - k(w I()]

(w4)1  -(W1) )l (A.26)

(w5)) -[1(w 2 )1 + (r3 )lJa 11

The rest are the same except for the second equation in (A91). That equation
is replaced by

(wgo =  
2 )l - (Y21)16u1  (y22) 16g1  (A.27)
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